ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome.

نویسندگان

  • Sidong Huang
  • Jamila Laoukili
  • Mirjam T Epping
  • Jan Koster
  • Michael Hölzel
  • Bart A Westerman
  • Wouter Nijkamp
  • Akiko Hata
  • Shahab Asgharzadeh
  • Robert C Seeger
  • Rogier Versteeg
  • Roderick L Beijersbergen
  • René Bernards
چکیده

Retinoids play key roles in differentiation, growth arrest, and apoptosis and are increasingly being used in the clinic for the treatment of a variety of cancers, including neuroblastoma. Here, using a large-scale RNA interference-based genetic screen, we identify ZNF423 (also known as Ebfaz, OAZ, or Zfp423) as a component critically required for retinoic acid (RA)-induced differentiation. ZNF423 associates with the RARalpha/RXRalpha nuclear receptor complex and is essential for transactivation in response to retinoids. Downregulation of ZNF423 expression by RNA interference in neuroblastoma cells results in a growth advantage and resistance to RA-induced differentiation, whereas overexpression of ZNF423 leads to growth inhibition and enhanced differentiation. Finally, we show that low ZNF423 expression is associated with poor disease outcome in neuroblastoma patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NF1 Is a Tumor Suppressor in Neuroblastoma that Determines Retinoic Acid Response and Disease Outcome

Retinoic acid (RA) induces differentiation of neuroblastoma cells in vitro and is used with variable success to treat aggressive forms of this disease. This variability in clinical response to RA is enigmatic, as no mutations in components of the RA signaling cascade have been found. Using a large-scale RNAi genetic screen, we identify crosstalk between the tumor suppressor NF1 and retinoic aci...

متن کامل

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

Analysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation

Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...

متن کامل

P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction

Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...

متن کامل

Apoptosis of N-type neuroblastoma cells after differentiation with 9-cis-retinoic acid and subsequent washout.

BACKGROUND The overall survival rate for patients with neuroblastoma has improved over the past two decades, but long-term survival for the subgroup of patients with high-risk disease remains low. In recent years, there has been interest in the potential clinical use of drugs able to induce differentiation of neuroblastoma cells. Since 9-cis-retinoic acid induces better and more sustained diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer cell

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 2009